Xenomai 3.3.2
Loading...
Searching...
No Matches
obstack.h
1/* obstack.h - object stack macros
2 Copyright (C) 1988-1994,1996-1999,2003,2004,2005
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21/* Summary:
22
23All the apparent functions defined here are macros. The idea
24is that you would use these pre-tested macros to solve a
25very specific set of problems, and they would run fast.
26Caution: no side-effects in arguments please!! They may be
27evaluated MANY times!!
28
29These macros operate a stack of objects. Each object starts life
30small, and may grow to maturity. (Consider building a word syllable
31by syllable.) An object can move while it is growing. Once it has
32been "finished" it never changes address again. So the "top of the
33stack" is typically an immature growing object, while the rest of the
34stack is of mature, fixed size and fixed address objects.
35
36These routines grab large chunks of memory, using a function you
37supply, called `obstack_chunk_alloc'. On occasion, they free chunks,
38by calling `obstack_chunk_free'. You must define them and declare
39them before using any obstack macros.
40
41Each independent stack is represented by a `struct obstack'.
42Each of the obstack macros expects a pointer to such a structure
43as the first argument.
44
45One motivation for this package is the problem of growing char strings
46in symbol tables. Unless you are "fascist pig with a read-only mind"
47--Gosper's immortal quote from HAKMEM item 154, out of context--you
48would not like to put any arbitrary upper limit on the length of your
49symbols.
50
51In practice this often means you will build many short symbols and a
52few long symbols. At the time you are reading a symbol you don't know
53how long it is. One traditional method is to read a symbol into a
54buffer, realloc()ating the buffer every time you try to read a symbol
55that is longer than the buffer. This is beaut, but you still will
56want to copy the symbol from the buffer to a more permanent
57symbol-table entry say about half the time.
58
59With obstacks, you can work differently. Use one obstack for all symbol
60names. As you read a symbol, grow the name in the obstack gradually.
61When the name is complete, finalize it. Then, if the symbol exists already,
62free the newly read name.
63
64The way we do this is to take a large chunk, allocating memory from
65low addresses. When you want to build a symbol in the chunk you just
66add chars above the current "high water mark" in the chunk. When you
67have finished adding chars, because you got to the end of the symbol,
68you know how long the chars are, and you can create a new object.
69Mostly the chars will not burst over the highest address of the chunk,
70because you would typically expect a chunk to be (say) 100 times as
71long as an average object.
72
73In case that isn't clear, when we have enough chars to make up
74the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
75so we just point to it where it lies. No moving of chars is
76needed and this is the second win: potentially long strings need
77never be explicitly shuffled. Once an object is formed, it does not
78change its address during its lifetime.
79
80When the chars burst over a chunk boundary, we allocate a larger
81chunk, and then copy the partly formed object from the end of the old
82chunk to the beginning of the new larger chunk. We then carry on
83accreting characters to the end of the object as we normally would.
84
85A special macro is provided to add a single char at a time to a
86growing object. This allows the use of register variables, which
87break the ordinary 'growth' macro.
88
89Summary:
90 We allocate large chunks.
91 We carve out one object at a time from the current chunk.
92 Once carved, an object never moves.
93 We are free to append data of any size to the currently
94 growing object.
95 Exactly one object is growing in an obstack at any one time.
96 You can run one obstack per control block.
97 You may have as many control blocks as you dare.
98 Because of the way we do it, you can `unwind' an obstack
99 back to a previous state. (You may remove objects much
100 as you would with a stack.)
101*/
102
103
104/* Don't do the contents of this file more than once. */
105
106#ifndef _BOILERPLATE_OBSTACK_H
107#define _BOILERPLATE_OBSTACK_H 1
108
109#ifdef HAVE_OBSTACK_H
110#include_next <obstack.h>
111#else
112
113#ifdef __cplusplus
114extern "C" {
115#endif
116
117/* We need the type of a pointer subtraction. If __PTRDIFF_TYPE__ is
118 defined, as with GNU C, use that; that way we don't pollute the
119 namespace with <stddef.h>'s symbols. Otherwise, include <stddef.h>
120 and use ptrdiff_t. */
121
122#ifdef __PTRDIFF_TYPE__
123# define PTR_INT_TYPE __PTRDIFF_TYPE__
124#else
125# include <stddef.h>
126# define PTR_INT_TYPE ptrdiff_t
127#endif
128
129/* If B is the base of an object addressed by P, return the result of
130 aligning P to the next multiple of A + 1. B and P must be of type
131 char *. A + 1 must be a power of 2. */
132
133#define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
134
135/* Similiar to _BPTR_ALIGN (B, P, A), except optimize the common case
136 where pointers can be converted to integers, aligned as integers,
137 and converted back again. If PTR_INT_TYPE is narrower than a
138 pointer (e.g., the AS/400), play it safe and compute the alignment
139 relative to B. Otherwise, use the faster strategy of computing the
140 alignment relative to 0. */
141
142#define __PTR_ALIGN(B, P, A) \
143 __BPTR_ALIGN (sizeof (PTR_INT_TYPE) < sizeof (void *) ? (B) : (char *) 0, \
144 P, A)
145
146#include <string.h>
147
148struct _obstack_chunk /* Lives at front of each chunk. */
149{
150 char *limit; /* 1 past end of this chunk */
151 struct _obstack_chunk *prev; /* address of prior chunk or NULL */
152 char contents[4]; /* objects begin here */
153};
154
155struct obstack /* control current object in current chunk */
156{
157 long chunk_size; /* preferred size to allocate chunks in */
158 struct _obstack_chunk *chunk; /* address of current struct obstack_chunk */
159 char *object_base; /* address of object we are building */
160 char *next_free; /* where to add next char to current object */
161 char *chunk_limit; /* address of char after current chunk */
162 union
163 {
164 PTR_INT_TYPE tempint;
165 void *tempptr;
166 } temp; /* Temporary for some macros. */
167 int alignment_mask; /* Mask of alignment for each object. */
168 /* These prototypes vary based on `use_extra_arg', and we use
169 casts to the prototypeless function type in all assignments,
170 but having prototypes here quiets -Wstrict-prototypes. */
171 struct _obstack_chunk *(*chunkfun) (void *, long);
172 void (*freefun) (void *, struct _obstack_chunk *);
173 void *extra_arg; /* first arg for chunk alloc/dealloc funcs */
174 unsigned use_extra_arg:1; /* chunk alloc/dealloc funcs take extra arg */
175 unsigned maybe_empty_object:1;/* There is a possibility that the current
176 chunk contains a zero-length object. This
177 prevents freeing the chunk if we allocate
178 a bigger chunk to replace it. */
179 unsigned alloc_failed:1; /* No longer used, as we now call the failed
180 handler on error, but retained for binary
181 compatibility. */
182};
183
184/* Declare the external functions we use; they are in obstack.c. */
185
186extern void _obstack_newchunk (struct obstack *, int);
187extern int _obstack_begin (struct obstack *, int, int,
188 void *(*) (long), void (*) (void *));
189extern int _obstack_begin_1 (struct obstack *, int, int,
190 void *(*) (void *, long),
191 void (*) (void *, void *), void *);
192extern int _obstack_memory_used (struct obstack *);
193
194void obstack_free (struct obstack *obstack, void *block);
195
196
197/* Error handler called when `obstack_chunk_alloc' failed to allocate
198 more memory. This can be set to a user defined function which
199 should either abort gracefully or use longjump - but shouldn't
200 return. The default action is to print a message and abort. */
201extern void (*obstack_alloc_failed_handler) (void);
202
203/* Exit value used when `print_and_abort' is used. */
204extern int obstack_exit_failure;
205
206/* Pointer to beginning of object being allocated or to be allocated next.
207 Note that this might not be the final address of the object
208 because a new chunk might be needed to hold the final size. */
209
210#define obstack_base(h) ((void *) (h)->object_base)
211
212/* Size for allocating ordinary chunks. */
213
214#define obstack_chunk_size(h) ((h)->chunk_size)
215
216/* Pointer to next byte not yet allocated in current chunk. */
217
218#define obstack_next_free(h) ((h)->next_free)
219
220/* Mask specifying low bits that should be clear in address of an object. */
221
222#define obstack_alignment_mask(h) ((h)->alignment_mask)
223
224/* To prevent prototype warnings provide complete argument list. */
225#define obstack_init(h) \
226 _obstack_begin ((h), 0, 0, \
227 (void *(*) (long)) obstack_chunk_alloc, \
228 (void (*) (void *)) obstack_chunk_free)
229
230#define obstack_begin(h, size) \
231 _obstack_begin ((h), (size), 0, \
232 (void *(*) (long)) obstack_chunk_alloc, \
233 (void (*) (void *)) obstack_chunk_free)
234
235#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
236 _obstack_begin ((h), (size), (alignment), \
237 (void *(*) (long)) (chunkfun), \
238 (void (*) (void *)) (freefun))
239
240#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
241 _obstack_begin_1 ((h), (size), (alignment), \
242 (void *(*) (void *, long)) (chunkfun), \
243 (void (*) (void *, void *)) (freefun), (arg))
244
245#define obstack_chunkfun(h, newchunkfun) \
246 ((h) -> chunkfun = (struct _obstack_chunk *(*)(void *, long)) (newchunkfun))
247
248#define obstack_freefun(h, newfreefun) \
249 ((h) -> freefun = (void (*)(void *, struct _obstack_chunk *)) (newfreefun))
250
251#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = (achar))
252
253#define obstack_blank_fast(h,n) ((h)->next_free += (n))
254
255#define obstack_memory_used(h) _obstack_memory_used (h)
256
257#if defined __GNUC__ && defined __STDC__ && __STDC__
258/* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
259 does not implement __extension__. But that compiler doesn't define
260 __GNUC_MINOR__. */
261# if __GNUC__ < 2 || (__NeXT__ && !__GNUC_MINOR__)
262# define __extension__
263# endif
264
265/* For GNU C, if not -traditional,
266 we can define these macros to compute all args only once
267 without using a global variable.
268 Also, we can avoid using the `temp' slot, to make faster code. */
269
270# define obstack_object_size(OBSTACK) \
271 __extension__ \
272 ({ struct obstack const *__o = (OBSTACK); \
273 (unsigned) (__o->next_free - __o->object_base); })
274
275# define obstack_room(OBSTACK) \
276 __extension__ \
277 ({ struct obstack const *__o = (OBSTACK); \
278 (unsigned) (__o->chunk_limit - __o->next_free); })
279
280# define obstack_make_room(OBSTACK,length) \
281__extension__ \
282({ struct obstack *__o = (OBSTACK); \
283 int __len = (length); \
284 if (__o->chunk_limit - __o->next_free < __len) \
285 _obstack_newchunk (__o, __len); \
286 (void) 0; })
287
288# define obstack_empty_p(OBSTACK) \
289 __extension__ \
290 ({ struct obstack const *__o = (OBSTACK); \
291 (__o->chunk->prev == 0 \
292 && __o->next_free == __PTR_ALIGN ((char *) __o->chunk, \
293 __o->chunk->contents, \
294 __o->alignment_mask)); })
295
296# define obstack_grow(OBSTACK,where,length) \
297__extension__ \
298({ struct obstack *__o = (OBSTACK); \
299 int __len = (length); \
300 if (__o->next_free + __len > __o->chunk_limit) \
301 _obstack_newchunk (__o, __len); \
302 memcpy (__o->next_free, where, __len); \
303 __o->next_free += __len; \
304 (void) 0; })
305
306# define obstack_grow0(OBSTACK,where,length) \
307__extension__ \
308({ struct obstack *__o = (OBSTACK); \
309 int __len = (length); \
310 if (__o->next_free + __len + 1 > __o->chunk_limit) \
311 _obstack_newchunk (__o, __len + 1); \
312 memcpy (__o->next_free, where, __len); \
313 __o->next_free += __len; \
314 *(__o->next_free)++ = 0; \
315 (void) 0; })
316
317# define obstack_1grow(OBSTACK,datum) \
318__extension__ \
319({ struct obstack *__o = (OBSTACK); \
320 if (__o->next_free + 1 > __o->chunk_limit) \
321 _obstack_newchunk (__o, 1); \
322 obstack_1grow_fast (__o, datum); \
323 (void) 0; })
324
325/* These assume that the obstack alignment is good enough for pointers
326 or ints, and that the data added so far to the current object
327 shares that much alignment. */
328
329# define obstack_ptr_grow(OBSTACK,datum) \
330__extension__ \
331({ struct obstack *__o = (OBSTACK); \
332 if (__o->next_free + sizeof (void *) > __o->chunk_limit) \
333 _obstack_newchunk (__o, sizeof (void *)); \
334 obstack_ptr_grow_fast (__o, datum); }) \
335
336# define obstack_int_grow(OBSTACK,datum) \
337__extension__ \
338({ struct obstack *__o = (OBSTACK); \
339 if (__o->next_free + sizeof (int) > __o->chunk_limit) \
340 _obstack_newchunk (__o, sizeof (int)); \
341 obstack_int_grow_fast (__o, datum); })
342
343# define obstack_ptr_grow_fast(OBSTACK,aptr) \
344__extension__ \
345({ struct obstack *__o1 = (OBSTACK); \
346 *(const void **) __o1->next_free = (aptr); \
347 __o1->next_free += sizeof (const void *); \
348 (void) 0; })
349
350# define obstack_int_grow_fast(OBSTACK,aint) \
351__extension__ \
352({ struct obstack *__o1 = (OBSTACK); \
353 *(int *) __o1->next_free = (aint); \
354 __o1->next_free += sizeof (int); \
355 (void) 0; })
356
357# define obstack_blank(OBSTACK,length) \
358__extension__ \
359({ struct obstack *__o = (OBSTACK); \
360 int __len = (length); \
361 if (__o->chunk_limit - __o->next_free < __len) \
362 _obstack_newchunk (__o, __len); \
363 obstack_blank_fast (__o, __len); \
364 (void) 0; })
365
366# define obstack_alloc(OBSTACK,length) \
367__extension__ \
368({ struct obstack *__h = (OBSTACK); \
369 obstack_blank (__h, (length)); \
370 obstack_finish (__h); })
371
372# define obstack_copy(OBSTACK,where,length) \
373__extension__ \
374({ struct obstack *__h = (OBSTACK); \
375 obstack_grow (__h, (where), (length)); \
376 obstack_finish (__h); })
377
378# define obstack_copy0(OBSTACK,where,length) \
379__extension__ \
380({ struct obstack *__h = (OBSTACK); \
381 obstack_grow0 (__h, (where), (length)); \
382 obstack_finish (__h); })
383
384/* The local variable is named __o1 to avoid a name conflict
385 when obstack_blank is called. */
386# define obstack_finish(OBSTACK) \
387__extension__ \
388({ struct obstack *__o1 = (OBSTACK); \
389 void *__value = (void *) __o1->object_base; \
390 if (__o1->next_free == __value) \
391 __o1->maybe_empty_object = 1; \
392 __o1->next_free \
393 = __PTR_ALIGN (__o1->object_base, __o1->next_free, \
394 __o1->alignment_mask); \
395 if (__o1->next_free - (char *)__o1->chunk \
396 > __o1->chunk_limit - (char *)__o1->chunk) \
397 __o1->next_free = __o1->chunk_limit; \
398 __o1->object_base = __o1->next_free; \
399 __value; })
400
401# define obstack_free(OBSTACK, OBJ) \
402__extension__ \
403({ struct obstack *__o = (OBSTACK); \
404 void *__obj = (OBJ); \
405 if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \
406 __o->next_free = __o->object_base = (char *)__obj; \
407 else (obstack_free) (__o, __obj); })
408
409#else /* not __GNUC__ or not __STDC__ */
410
411# define obstack_object_size(h) \
412 (unsigned) ((h)->next_free - (h)->object_base)
413
414# define obstack_room(h) \
415 (unsigned) ((h)->chunk_limit - (h)->next_free)
416
417# define obstack_empty_p(h) \
418 ((h)->chunk->prev == 0 \
419 && (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk, \
420 (h)->chunk->contents, \
421 (h)->alignment_mask))
422
423/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
424 so that we can avoid having void expressions
425 in the arms of the conditional expression.
426 Casting the third operand to void was tried before,
427 but some compilers won't accept it. */
428
429# define obstack_make_room(h,length) \
430( (h)->temp.tempint = (length), \
431 (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit) \
432 ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0))
433
434# define obstack_grow(h,where,length) \
435( (h)->temp.tempint = (length), \
436 (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit) \
437 ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0), \
438 memcpy ((h)->next_free, where, (h)->temp.tempint), \
439 (h)->next_free += (h)->temp.tempint)
440
441# define obstack_grow0(h,where,length) \
442( (h)->temp.tempint = (length), \
443 (((h)->next_free + (h)->temp.tempint + 1 > (h)->chunk_limit) \
444 ? (_obstack_newchunk ((h), (h)->temp.tempint + 1), 0) : 0), \
445 memcpy ((h)->next_free, where, (h)->temp.tempint), \
446 (h)->next_free += (h)->temp.tempint, \
447 *((h)->next_free)++ = 0)
448
449# define obstack_1grow(h,datum) \
450( (((h)->next_free + 1 > (h)->chunk_limit) \
451 ? (_obstack_newchunk ((h), 1), 0) : 0), \
452 obstack_1grow_fast (h, datum))
453
454# define obstack_ptr_grow(h,datum) \
455( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \
456 ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \
457 obstack_ptr_grow_fast (h, datum))
458
459# define obstack_int_grow(h,datum) \
460( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \
461 ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \
462 obstack_int_grow_fast (h, datum))
463
464# define obstack_ptr_grow_fast(h,aptr) \
465 (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr))
466
467# define obstack_int_grow_fast(h,aint) \
468 (((int *) ((h)->next_free += sizeof (int)))[-1] = (aint))
469
470# define obstack_blank(h,length) \
471( (h)->temp.tempint = (length), \
472 (((h)->chunk_limit - (h)->next_free < (h)->temp.tempint) \
473 ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0), \
474 obstack_blank_fast (h, (h)->temp.tempint))
475
476# define obstack_alloc(h,length) \
477 (obstack_blank ((h), (length)), obstack_finish ((h)))
478
479# define obstack_copy(h,where,length) \
480 (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
481
482# define obstack_copy0(h,where,length) \
483 (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
484
485# define obstack_finish(h) \
486( ((h)->next_free == (h)->object_base \
487 ? (((h)->maybe_empty_object = 1), 0) \
488 : 0), \
489 (h)->temp.tempptr = (h)->object_base, \
490 (h)->next_free \
491 = __PTR_ALIGN ((h)->object_base, (h)->next_free, \
492 (h)->alignment_mask), \
493 (((h)->next_free - (char *) (h)->chunk \
494 > (h)->chunk_limit - (char *) (h)->chunk) \
495 ? ((h)->next_free = (h)->chunk_limit) : 0), \
496 (h)->object_base = (h)->next_free, \
497 (h)->temp.tempptr)
498
499# define obstack_free(h,obj) \
500( (h)->temp.tempint = (char *) (obj) - (char *) (h)->chunk, \
501 ((((h)->temp.tempint > 0 \
502 && (h)->temp.tempint < (h)->chunk_limit - (char *) (h)->chunk)) \
503 ? (int) ((h)->next_free = (h)->object_base \
504 = (h)->temp.tempint + (char *) (h)->chunk) \
505 : (((obstack_free) ((h), (h)->temp.tempint + (char *) (h)->chunk), 0), 0)))
506
507#endif /* not __GNUC__ or not __STDC__ */
508
509#ifdef __cplusplus
510} /* C++ */
511#endif
512
513#endif /* !HAVE_OBSTACK_H */
514
515#endif /* _BOILERPLATE_OBSTACK_H */