Xenomai
3.1
obstack.h
1
/* obstack.h - object stack macros
2
Copyright (C) 1988-1994,1996-1999,2003,2004,2005
3
Free Software Foundation, Inc.
4
This file is part of the GNU C Library.
5
6
The GNU C Library is free software; you can redistribute it and/or
7
modify it under the terms of the GNU Lesser General Public
8
License as published by the Free Software Foundation; either
9
version 2.1 of the License, or (at your option) any later version.
10
11
The GNU C Library is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
Lesser General Public License for more details.
15
16
You should have received a copy of the GNU Lesser General Public
17
License along with the GNU C Library; if not, write to the Free
18
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19
Boston, MA 02110-1301, USA. */
20
21
/* Summary:
22
23
All the apparent functions defined here are macros. The idea
24
is that you would use these pre-tested macros to solve a
25
very specific set of problems, and they would run fast.
26
Caution: no side-effects in arguments please!! They may be
27
evaluated MANY times!!
28
29
These macros operate a stack of objects. Each object starts life
30
small, and may grow to maturity. (Consider building a word syllable
31
by syllable.) An object can move while it is growing. Once it has
32
been "finished" it never changes address again. So the "top of the
33
stack" is typically an immature growing object, while the rest of the
34
stack is of mature, fixed size and fixed address objects.
35
36
These routines grab large chunks of memory, using a function you
37
supply, called `obstack_chunk_alloc'. On occasion, they free chunks,
38
by calling `obstack_chunk_free'. You must define them and declare
39
them before using any obstack macros.
40
41
Each independent stack is represented by a `struct obstack'.
42
Each of the obstack macros expects a pointer to such a structure
43
as the first argument.
44
45
One motivation for this package is the problem of growing char strings
46
in symbol tables. Unless you are "fascist pig with a read-only mind"
47
--Gosper's immortal quote from HAKMEM item 154, out of context--you
48
would not like to put any arbitrary upper limit on the length of your
49
symbols.
50
51
In practice this often means you will build many short symbols and a
52
few long symbols. At the time you are reading a symbol you don't know
53
how long it is. One traditional method is to read a symbol into a
54
buffer, realloc()ating the buffer every time you try to read a symbol
55
that is longer than the buffer. This is beaut, but you still will
56
want to copy the symbol from the buffer to a more permanent
57
symbol-table entry say about half the time.
58
59
With obstacks, you can work differently. Use one obstack for all symbol
60
names. As you read a symbol, grow the name in the obstack gradually.
61
When the name is complete, finalize it. Then, if the symbol exists already,
62
free the newly read name.
63
64
The way we do this is to take a large chunk, allocating memory from
65
low addresses. When you want to build a symbol in the chunk you just
66
add chars above the current "high water mark" in the chunk. When you
67
have finished adding chars, because you got to the end of the symbol,
68
you know how long the chars are, and you can create a new object.
69
Mostly the chars will not burst over the highest address of the chunk,
70
because you would typically expect a chunk to be (say) 100 times as
71
long as an average object.
72
73
In case that isn't clear, when we have enough chars to make up
74
the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
75
so we just point to it where it lies. No moving of chars is
76
needed and this is the second win: potentially long strings need
77
never be explicitly shuffled. Once an object is formed, it does not
78
change its address during its lifetime.
79
80
When the chars burst over a chunk boundary, we allocate a larger
81
chunk, and then copy the partly formed object from the end of the old
82
chunk to the beginning of the new larger chunk. We then carry on
83
accreting characters to the end of the object as we normally would.
84
85
A special macro is provided to add a single char at a time to a
86
growing object. This allows the use of register variables, which
87
break the ordinary 'growth' macro.
88
89
Summary:
90
We allocate large chunks.
91
We carve out one object at a time from the current chunk.
92
Once carved, an object never moves.
93
We are free to append data of any size to the currently
94
growing object.
95
Exactly one object is growing in an obstack at any one time.
96
You can run one obstack per control block.
97
You may have as many control blocks as you dare.
98
Because of the way we do it, you can `unwind' an obstack
99
back to a previous state. (You may remove objects much
100
as you would with a stack.)
101
*/
102
103
104
/* Don't do the contents of this file more than once. */
105
106
#ifndef _BOILERPLATE_OBSTACK_H
107
#define _BOILERPLATE_OBSTACK_H 1
108
109
#ifdef HAVE_OBSTACK_H
110
#include_next <obstack.h>
111
#else
112
113
#ifdef __cplusplus
114
extern
"C"
{
115
#endif
116
117
/* We need the type of a pointer subtraction. If __PTRDIFF_TYPE__ is
118
defined, as with GNU C, use that; that way we don't pollute the
119
namespace with <stddef.h>'s symbols. Otherwise, include <stddef.h>
120
and use ptrdiff_t. */
121
122
#ifdef __PTRDIFF_TYPE__
123
# define PTR_INT_TYPE __PTRDIFF_TYPE__
124
#else
125
# include <stddef.h>
126
# define PTR_INT_TYPE ptrdiff_t
127
#endif
128
129
/* If B is the base of an object addressed by P, return the result of
130
aligning P to the next multiple of A + 1. B and P must be of type
131
char *. A + 1 must be a power of 2. */
132
133
#define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
134
135
/* Similiar to _BPTR_ALIGN (B, P, A), except optimize the common case
136
where pointers can be converted to integers, aligned as integers,
137
and converted back again. If PTR_INT_TYPE is narrower than a
138
pointer (e.g., the AS/400), play it safe and compute the alignment
139
relative to B. Otherwise, use the faster strategy of computing the
140
alignment relative to 0. */
141
142
#define __PTR_ALIGN(B, P, A) \
143
__BPTR_ALIGN (sizeof (PTR_INT_TYPE) < sizeof (void *) ? (B) : (char *) 0, \
144
P, A)
145
146
#include <string.h>
147
148
struct
_obstack_chunk
/* Lives at front of each chunk. */
149
{
150
char
*limit;
/* 1 past end of this chunk */
151
struct
_obstack_chunk *prev;
/* address of prior chunk or NULL */
152
char
contents[4];
/* objects begin here */
153
};
154
155
struct
obstack
/* control current object in current chunk */
156
{
157
long
chunk_size;
/* preferred size to allocate chunks in */
158
struct
_obstack_chunk *chunk;
/* address of current struct obstack_chunk */
159
char
*object_base;
/* address of object we are building */
160
char
*next_free;
/* where to add next char to current object */
161
char
*chunk_limit;
/* address of char after current chunk */
162
union
163
{
164
PTR_INT_TYPE tempint;
165
void
*tempptr;
166
} temp;
/* Temporary for some macros. */
167
int
alignment_mask;
/* Mask of alignment for each object. */
168
/* These prototypes vary based on `use_extra_arg', and we use
169
casts to the prototypeless function type in all assignments,
170
but having prototypes here quiets -Wstrict-prototypes. */
171
struct
_obstack_chunk *(*chunkfun) (
void
*, long);
172
void (*freefun) (
void
*,
struct
_obstack_chunk *);
173
void
*extra_arg;
/* first arg for chunk alloc/dealloc funcs */
174
unsigned
use_extra_arg:1;
/* chunk alloc/dealloc funcs take extra arg */
175
unsigned
maybe_empty_object:1;
/* There is a possibility that the current
176
chunk contains a zero-length object. This
177
prevents freeing the chunk if we allocate
178
a bigger chunk to replace it. */
179
unsigned
alloc_failed:1;
/* No longer used, as we now call the failed
180
handler on error, but retained for binary
181
compatibility. */
182
};
183
184
/* Declare the external functions we use; they are in obstack.c. */
185
186
extern
void
_obstack_newchunk (
struct
obstack *,
int
);
187
extern
int
_obstack_begin (
struct
obstack *,
int
,
int
,
188
void
*(*) (
long
),
void
(*) (
void
*));
189
extern
int
_obstack_begin_1 (
struct
obstack *,
int
,
int
,
190
void
*(*) (
void
*,
long
),
191
void
(*) (
void
*,
void
*),
void
*);
192
extern
int
_obstack_memory_used (
struct
obstack *);
193
194
void
obstack_free (
struct
obstack *obstack,
void
*block);
195
196
197
/* Error handler called when `obstack_chunk_alloc' failed to allocate
198
more memory. This can be set to a user defined function which
199
should either abort gracefully or use longjump - but shouldn't
200
return. The default action is to print a message and abort. */
201
extern
void (*obstack_alloc_failed_handler) (void);
202
203
/* Exit value used when `print_and_abort' is used. */
204
extern
int
obstack_exit_failure;
205
206
/* Pointer to beginning of object being allocated or to be allocated next.
207
Note that this might not be the final address of the object
208
because a new chunk might be needed to hold the final size. */
209
210
#define obstack_base(h) ((void *) (h)->object_base)
211
212
/* Size for allocating ordinary chunks. */
213
214
#define obstack_chunk_size(h) ((h)->chunk_size)
215
216
/* Pointer to next byte not yet allocated in current chunk. */
217
218
#define obstack_next_free(h) ((h)->next_free)
219
220
/* Mask specifying low bits that should be clear in address of an object. */
221
222
#define obstack_alignment_mask(h) ((h)->alignment_mask)
223
224
/* To prevent prototype warnings provide complete argument list. */
225
#define obstack_init(h) \
226
_obstack_begin ((h), 0, 0, \
227
(void *(*) (long)) obstack_chunk_alloc, \
228
(void (*) (void *)) obstack_chunk_free)
229
230
#define obstack_begin(h, size) \
231
_obstack_begin ((h), (size), 0, \
232
(void *(*) (long)) obstack_chunk_alloc, \
233
(void (*) (void *)) obstack_chunk_free)
234
235
#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
236
_obstack_begin ((h), (size), (alignment), \
237
(void *(*) (long)) (chunkfun), \
238
(void (*) (void *)) (freefun))
239
240
#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
241
_obstack_begin_1 ((h), (size), (alignment), \
242
(void *(*) (void *, long)) (chunkfun), \
243
(void (*) (void *, void *)) (freefun), (arg))
244
245
#define obstack_chunkfun(h, newchunkfun) \
246
((h) -> chunkfun = (struct _obstack_chunk *(*)(void *, long)) (newchunkfun))
247
248
#define obstack_freefun(h, newfreefun) \
249
((h) -> freefun = (void (*)(void *, struct _obstack_chunk *)) (newfreefun))
250
251
#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = (achar))
252
253
#define obstack_blank_fast(h,n) ((h)->next_free += (n))
254
255
#define obstack_memory_used(h) _obstack_memory_used (h)
256
257
#if defined __GNUC__ && defined __STDC__ && __STDC__
258
/* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
259
does not implement __extension__. But that compiler doesn't define
260
__GNUC_MINOR__. */
261
# if __GNUC__ < 2 || (__NeXT__ && !__GNUC_MINOR__)
262
# define __extension__
263
# endif
264
265
/* For GNU C, if not -traditional,
266
we can define these macros to compute all args only once
267
without using a global variable.
268
Also, we can avoid using the `temp' slot, to make faster code. */
269
270
# define obstack_object_size(OBSTACK) \
271
__extension__ \
272
({ struct obstack const *__o = (OBSTACK); \
273
(unsigned) (__o->next_free - __o->object_base); })
274
275
# define obstack_room(OBSTACK) \
276
__extension__ \
277
({ struct obstack const *__o = (OBSTACK); \
278
(unsigned) (__o->chunk_limit - __o->next_free); })
279
280
# define obstack_make_room(OBSTACK,length) \
281
__extension__ \
282
({ struct obstack *__o = (OBSTACK); \
283
int __len = (length); \
284
if (__o->chunk_limit - __o->next_free < __len) \
285
_obstack_newchunk (__o, __len); \
286
(void) 0; })
287
288
# define obstack_empty_p(OBSTACK) \
289
__extension__ \
290
({ struct obstack const *__o = (OBSTACK); \
291
(__o->chunk->prev == 0 \
292
&& __o->next_free == __PTR_ALIGN ((char *) __o->chunk, \
293
__o->chunk->contents, \
294
__o->alignment_mask)); })
295
296
# define obstack_grow(OBSTACK,where,length) \
297
__extension__ \
298
({ struct obstack *__o = (OBSTACK); \
299
int __len = (length); \
300
if (__o->next_free + __len > __o->chunk_limit) \
301
_obstack_newchunk (__o, __len); \
302
memcpy (__o->next_free, where, __len); \
303
__o->next_free += __len; \
304
(void) 0; })
305
306
# define obstack_grow0(OBSTACK,where,length) \
307
__extension__ \
308
({ struct obstack *__o = (OBSTACK); \
309
int __len = (length); \
310
if (__o->next_free + __len + 1 > __o->chunk_limit) \
311
_obstack_newchunk (__o, __len + 1); \
312
memcpy (__o->next_free, where, __len); \
313
__o->next_free += __len; \
314
*(__o->next_free)++ = 0; \
315
(void) 0; })
316
317
# define obstack_1grow(OBSTACK,datum) \
318
__extension__ \
319
({ struct obstack *__o = (OBSTACK); \
320
if (__o->next_free + 1 > __o->chunk_limit) \
321
_obstack_newchunk (__o, 1); \
322
obstack_1grow_fast (__o, datum); \
323
(void) 0; })
324
325
/* These assume that the obstack alignment is good enough for pointers
326
or ints, and that the data added so far to the current object
327
shares that much alignment. */
328
329
# define obstack_ptr_grow(OBSTACK,datum) \
330
__extension__ \
331
({ struct obstack *__o = (OBSTACK); \
332
if (__o->next_free + sizeof (void *) > __o->chunk_limit) \
333
_obstack_newchunk (__o, sizeof (void *)); \
334
obstack_ptr_grow_fast (__o, datum); }) \
335
336
# define obstack_int_grow(OBSTACK,datum) \
337
__extension__ \
338
({ struct obstack *__o = (OBSTACK); \
339
if (__o->next_free + sizeof (int) > __o->chunk_limit) \
340
_obstack_newchunk (__o, sizeof (int)); \
341
obstack_int_grow_fast (__o, datum); })
342
343
# define obstack_ptr_grow_fast(OBSTACK,aptr) \
344
__extension__ \
345
({ struct obstack *__o1 = (OBSTACK); \
346
*(const void **) __o1->next_free = (aptr); \
347
__o1->next_free += sizeof (const void *); \
348
(void) 0; })
349
350
# define obstack_int_grow_fast(OBSTACK,aint) \
351
__extension__ \
352
({ struct obstack *__o1 = (OBSTACK); \
353
*(int *) __o1->next_free = (aint); \
354
__o1->next_free += sizeof (int); \
355
(void) 0; })
356
357
# define obstack_blank(OBSTACK,length) \
358
__extension__ \
359
({ struct obstack *__o = (OBSTACK); \
360
int __len = (length); \
361
if (__o->chunk_limit - __o->next_free < __len) \
362
_obstack_newchunk (__o, __len); \
363
obstack_blank_fast (__o, __len); \
364
(void) 0; })
365
366
# define obstack_alloc(OBSTACK,length) \
367
__extension__ \
368
({ struct obstack *__h = (OBSTACK); \
369
obstack_blank (__h, (length)); \
370
obstack_finish (__h); })
371
372
# define obstack_copy(OBSTACK,where,length) \
373
__extension__ \
374
({ struct obstack *__h = (OBSTACK); \
375
obstack_grow (__h, (where), (length)); \
376
obstack_finish (__h); })
377
378
# define obstack_copy0(OBSTACK,where,length) \
379
__extension__ \
380
({ struct obstack *__h = (OBSTACK); \
381
obstack_grow0 (__h, (where), (length)); \
382
obstack_finish (__h); })
383
384
/* The local variable is named __o1 to avoid a name conflict
385
when obstack_blank is called. */
386
# define obstack_finish(OBSTACK) \
387
__extension__ \
388
({ struct obstack *__o1 = (OBSTACK); \
389
void *__value = (void *) __o1->object_base; \
390
if (__o1->next_free == __value) \
391
__o1->maybe_empty_object = 1; \
392
__o1->next_free \
393
= __PTR_ALIGN (__o1->object_base, __o1->next_free, \
394
__o1->alignment_mask); \
395
if (__o1->next_free - (char *)__o1->chunk \
396
> __o1->chunk_limit - (char *)__o1->chunk) \
397
__o1->next_free = __o1->chunk_limit; \
398
__o1->object_base = __o1->next_free; \
399
__value; })
400
401
# define obstack_free(OBSTACK, OBJ) \
402
__extension__ \
403
({ struct obstack *__o = (OBSTACK); \
404
void *__obj = (OBJ); \
405
if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \
406
__o->next_free = __o->object_base = (char *)__obj; \
407
else (obstack_free) (__o, __obj); })
408
409
#else
/* not __GNUC__ or not __STDC__ */
410
411
# define obstack_object_size(h) \
412
(unsigned) ((h)->next_free - (h)->object_base)
413
414
# define obstack_room(h) \
415
(unsigned) ((h)->chunk_limit - (h)->next_free)
416
417
# define obstack_empty_p(h) \
418
((h)->chunk->prev == 0 \
419
&& (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk, \
420
(h)->chunk->contents, \
421
(h)->alignment_mask))
422
423
/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
424
so that we can avoid having void expressions
425
in the arms of the conditional expression.
426
Casting the third operand to void was tried before,
427
but some compilers won't accept it. */
428
429
# define obstack_make_room(h,length) \
430
( (h)->temp.tempint = (length), \
431
(((h)->next_free + (h)->temp.tempint > (h)->chunk_limit) \
432
? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0))
433
434
# define obstack_grow(h,where,length) \
435
( (h)->temp.tempint = (length), \
436
(((h)->next_free + (h)->temp.tempint > (h)->chunk_limit) \
437
? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0), \
438
memcpy ((h)->next_free, where, (h)->temp.tempint), \
439
(h)->next_free += (h)->temp.tempint)
440
441
# define obstack_grow0(h,where,length) \
442
( (h)->temp.tempint = (length), \
443
(((h)->next_free + (h)->temp.tempint + 1 > (h)->chunk_limit) \
444
? (_obstack_newchunk ((h), (h)->temp.tempint + 1), 0) : 0), \
445
memcpy ((h)->next_free, where, (h)->temp.tempint), \
446
(h)->next_free += (h)->temp.tempint, \
447
*((h)->next_free)++ = 0)
448
449
# define obstack_1grow(h,datum) \
450
( (((h)->next_free + 1 > (h)->chunk_limit) \
451
? (_obstack_newchunk ((h), 1), 0) : 0), \
452
obstack_1grow_fast (h, datum))
453
454
# define obstack_ptr_grow(h,datum) \
455
( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \
456
? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \
457
obstack_ptr_grow_fast (h, datum))
458
459
# define obstack_int_grow(h,datum) \
460
( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \
461
? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \
462
obstack_int_grow_fast (h, datum))
463
464
# define obstack_ptr_grow_fast(h,aptr) \
465
(((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr))
466
467
# define obstack_int_grow_fast(h,aint) \
468
(((int *) ((h)->next_free += sizeof (int)))[-1] = (aint))
469
470
# define obstack_blank(h,length) \
471
( (h)->temp.tempint = (length), \
472
(((h)->chunk_limit - (h)->next_free < (h)->temp.tempint) \
473
? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0), \
474
obstack_blank_fast (h, (h)->temp.tempint))
475
476
# define obstack_alloc(h,length) \
477
(obstack_blank ((h), (length)), obstack_finish ((h)))
478
479
# define obstack_copy(h,where,length) \
480
(obstack_grow ((h), (where), (length)), obstack_finish ((h)))
481
482
# define obstack_copy0(h,where,length) \
483
(obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
484
485
# define obstack_finish(h) \
486
( ((h)->next_free == (h)->object_base \
487
? (((h)->maybe_empty_object = 1), 0) \
488
: 0), \
489
(h)->temp.tempptr = (h)->object_base, \
490
(h)->next_free \
491
= __PTR_ALIGN ((h)->object_base, (h)->next_free, \
492
(h)->alignment_mask), \
493
(((h)->next_free - (char *) (h)->chunk \
494
> (h)->chunk_limit - (char *) (h)->chunk) \
495
? ((h)->next_free = (h)->chunk_limit) : 0), \
496
(h)->object_base = (h)->next_free, \
497
(h)->temp.tempptr)
498
499
# define obstack_free(h,obj) \
500
( (h)->temp.tempint = (char *) (obj) - (char *) (h)->chunk, \
501
((((h)->temp.tempint > 0 \
502
&& (h)->temp.tempint < (h)->chunk_limit - (char *) (h)->chunk)) \
503
? (int) ((h)->next_free = (h)->object_base \
504
= (h)->temp.tempint + (char *) (h)->chunk) \
505
: (((obstack_free) ((h), (h)->temp.tempint + (char *) (h)->chunk), 0), 0)))
506
507
#endif
/* not __GNUC__ or not __STDC__ */
508
509
#ifdef __cplusplus
510
}
/* C++ */
511
#endif
512
513
#endif
/* !HAVE_OBSTACK_H */
514
515
#endif
/* _BOILERPLATE_OBSTACK_H */
include
boilerplate
obstack.h
Generated by
1.8.14